On special submodule of modules

Authors

Abstract:

‎Let $R$ be a domain with quotiont field $K$‎, ‎and‎ ‎let $N$ be a submodule of an $R$-module $M$‎. ‎We say that $N$ is‎ ‎powerful (strongly primary) if $x,yin K$ and‎ ‎$xyMsubseteq N$‎, ‎then $xin R$ or $yin R$ ($xMsubseteq N$‎ ‎or $y^nMsubseteq N$ for some $ngeq1$)‎. ‎We show that a submodule‎ ‎with either of these properties is comparable to every prime‎ ‎submodule of $M$‎, ‎also we show that an $R$-module $M$ admits a‎ ‎powerful submodule if and only if it admits a strongly primary‎ ‎submodule‎. ‎Finally we study finitely generated torsion free‎ ‎modules over domain each of whose prime submodules are strongly‎ ‎primary‎.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

on special submodule of modules

‎let $r$ be a domain with quotiont field $k$‎, ‎and‎ ‎let $n$ be a submodule of an $r$-module $m$‎. ‎we say that $n$ is‎ ‎powerful (strongly primary) if $x,yin k$ and‎ ‎$xymsubseteq n$‎, ‎then $xin r$ or $yin r$ ($xmsubseteq n$‎ ‎or $y^nmsubseteq n$ for some $ngeq1$)‎. ‎we show that a submodule‎ ‎with either of these properties is comparable to every prime‎ ‎submodule of $m$‎, ‎also we show tha...

full text

on direct sums of baer modules

the notion of baer modules was defined recently

Modules for which every non-cosingular submodule is a summand

‎A module $M$ is lifting if and only if $M$ is amply supplemented and‎ ‎every coclosed submodule of $M$ is a direct summand‎. ‎In this paper‎, ‎we are‎ ‎interested in a generalization of lifting modules by removing the condition‎"‎amply supplemented‎" ‎and just focus on modules such that every non-cosingular‎ ‎submodule of them is a summand‎. ‎We call these modules NS‎. ‎We investigate some gen...

full text

Annihilating Submodule Graphs for Modules over Commutative Rings

In this article, we give several generalizations of the concept of annihilating an ideal graph over a commutative ring with identity to modules. We observe that, over a commutative ring, R, AG∗(RM) is connected, and diamAG∗(RM) ≤ 3. Moreover, if AG∗(RM) contains a cycle, then grAG∗(RM) ≤ 4. Also for an R-module M with A∗(M) ̸= S(M) \ {0}, A∗(M) = ∅, if and only if M is a uniform module, and ann(...

full text

dedekind modules and dimension of modules

در این پایان نامه، در ابتدا برای مدول ها روی دامنه های پروفر شرایط معادل به دست آورده ایم و خواصی از ددکیند مدول ها روی دامنه های پروفر مشخص کرده ایم. در ادامه برای ددکیند مدول های با تولید متناهی روی حلقه های به طور صحیح بسته شرایط معادل به دست آورده ایم و ددکیند مدول های ضربی را مشخص کرده ایم. گزاره هایی در مورد بعد ددکیند مدول ها بیان کرده ایم. در پایان، قضایای lying over و going down را برا...

15 صفحه اول

A Submodule-Based Zero Divisors Graph for Modules

‎Let $R$ be commutative ring with identity and $M$ be an $R$-module‎. ‎The zero divisor graph of $M$ is denoted $Gamma{(M)}$‎. ‎In this study‎, ‎we are going to generalize the zero divisor graph $Gamma(M)$ to submodule-based zero divisor graph $Gamma(M‎, ‎N)$ by replacing elements whose product is zero with elements whose product is in some submodules $N$ of $M$‎. ‎The main objective of this pa...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 40  issue 6

pages  1441- 1451

publication date 2014-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023